Chapter 5

CONTINUITY AND
DIFFERENTIABILITY

«» The whole of science is nothing more than a refinement
of everyday thinking.” — ALBERT EINSTEIN <

5.1 Introduction

This chapter is essentially a continuation of our study of
differentiation of functions in Class XI. We had learnt to
differentiate certain functionslike polynomial functionsand
trigonometric functions. In this chapter, we introduce the
very important concepts of continuity, differentiability and
relations between them. We will also learn differentiation
of inversetrigonometric functions. Further, weintroduce a
new class of functions called exponential and logarithmic
functions. These functions lead to powerful techniques of
differentiation. Weillustrate certain geometrically obvious
conditionsthrough differential calculus. Inthe process, we
will learn some fundamental theoremsin thisarea. P TT
Sir I'ssac Newton

5.2 Continuity (1642-1727)
We start the section with two informal examples to get afeel of continuity. Consider
thefunction

1if x<0

f(x) =1, N
2,if x>0
Thisfunctionisof course defined at every y=fx)

point of thereal line. Graph of thisfunctionis (0,2)
giveninthe Fig 5.1. One can deduce from the
graph that the value of the function at nearby —¢(0,1)
points on x-axis remain close to each other _ . X
except at x = 0. At the points near and to the X'« J0 -
leftof O,i.e, at pointslike—0.1,—0.01,—0.001, Y’

thevalue of thefunctionis 1. At the points near
andtotheright of 0,i.e., at pointslike0.1, 0.01, Fig5.1
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0.001, thevalue of thefunctionis 2. Using the language of |eft and right hand limits, we
may say that the left (respectively right) hand limit of f at 0 is 1 (respectively 2). In
particular the left and right hand limits do not coincide. We al so observethat the value
of thefunction at x = 0 concideswith the left hand limit. Note that when wetry to draw
the graph, we cannot draw it in onestroke, i.e., without lifting pen from the plane of the
paper, we can not draw the graph of thisfunction. In fact, we need to lift the pen when
we cometo 0 from left. Thisisoneinstance of function being not continuousat x = 0.
Now, consider the function defined as

F(x) = 1if x#20
~|2,if x=0

Thisfunction is also defined at every point. Left and the right hand limitsat x =0
are both equal to 1. But the value of the
function at x = 0 equals 2 which does not
coincide with the common value of the left
and right hand limits. Again, we note that we
cannot draw the graph of the function without
lifting the pen. Thisisyet another instance of < >
afunction being not continuous at x = 0. I

Naively, we may say that a function is X'< lo
continuous at afixed point if we can draw the Y’

Fig5.2

graph of thefunction around that point without
lifting the pen from the plane of the paper.

Mathematically, it may be phrased precisely asfollows:

Definition 1 Suppose fisareal function on a subset of the real numbersand let ¢ be
apoint in the domain of f. Then f is continuous at c if

limf ()= (0)

Moreelaborately, if theleft hand limit, right hand limit and the val ue of thefunction
at x = c exist and equal to each other, then f is said to be continuous at x = ¢. Recall that
if the right hand and left hand limits at x = ¢ coincide, then we say that the common
valueisthelimit of thefunction at x = c. Hence we may also rephrase the definition of
continuity as follows:. a function is continuous at x = c if the function is defined at
x = ¢ and if the value of the function at x = ¢ equals the limit of the function at
x = c¢. If fisnot continuous at ¢, we say f is discontinuous at ¢ and c is called a point
of discontinuity of f.
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Example 1 Check the continuity of the function f given by f(x) = 2x + 3at x = 1.

Solution First note that the function is defined at the given point x = 1 and itsvalueisb.
Then find the limit of the function at x = 1. Clearly

limf (x)=lim(2x+3) =2(1)+3=5
Xx—1 X—>1

Thus lem f(x)=5= (1)
Hence, f is continuous at x = 1.

Example 2 Examine whether the function f given by f(X) = x2 is continuous at x = 0.

Solution First note that the function is defined at the given point x = 0 and itsvalueisO.
Then find the limit of the function at x = 0. Clearly

limf(x)=limx*=0?=0
X—0 X—>0

Thus !(lm) f(x)=0= f(0)
Hence, f is continuous at x = 0.
Example 3 Discuss the continuity of the function f given by f(x) = | x| at x = 0.
Solution By definition
-x,if x<0
) = X, if x>0
Clearly the function is defined at 0 and f(0) = 0. Left hand limit of fat Ois

limf(x)=lim(=x)=0
Xx—0" X—>0"
Similarly, theright hand limitof fat Ois

lim f(x)=limx=0

Xx—0" x—0"

Thus, theleft hand limit, right hand limit and the val ue of the function coincide at
X = 0. Hence, f is continuous at x = 0.

Example 4 Show that the function f given by

X +3, if x20
09 =1y, if x=0

is not continuous at x = 0.
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Solution The function is defined at x =0 and itsvalue at x = 0is 1. When x # 0, the
functionisgiven by apolynomial. Hence,

limf(x) = lim(x®+3)=0°+3=3
x—=>0 x—0

Sincethelimit of f at X =0 doesnot coincidewith f(0), thefunctionisnot continuous
at x = 0. It may be noted that x = 0 isthe only point of discontinuity for this function.

Example 5 Check the points where the constant function f(x) = k is continuous.
Solution Thefunction isdefined at all real numbers and by definition, itsvalue at any
real number equals k. Let ¢ be any real number. Then

limf(x) = limk=k

X—>C X—>C

Sincef(c) =k = lim f(x) for any real number c, the function f is continuous at

X—>C

every real number.

Example 6 Prove that the identity function on real numbers given by f(x) = x is
continuous at every real number.

Solution The function is clearly defined at every point and f(c) = ¢ for every real
number c. Also,

limf(x) = limx=c
X—=>C X—>C
Thus, !(Im f(x) = ¢ = f(c) and hence the function is continuous at every real number.
Having defined continuity of afunction at a given point, now we make a natural

extension of thisdefinition to discuss continuity of afunction.

Definition 2 A real function f is said to be continuousif it is continuous at every point
in the domain of f.

This definition requires a bit of elaboration. Suppose f is afunction defined on a
closed interval [a, b], then for f to be continuous, it needs to be continuous at every
point in[a, b] including the end points a and b. Continuity of f at a means

lim f(x)=f(a)
X—a

and continuity of f at b means
Iirpﬁ f(X) = f(b)

Observe that lim f(x) and Iirg f (x) do not make sense. As a consequence

X—a

of this definition, if f is defined only at one point, it is continuous there, i.e., if the
domain of f is a singleton, f is a continuous function.
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Example 7 Isthe function defined by f(X) = | x |, a continuous function?

Solution We may rewrite f as

-X,if x<0
FO9 = X, if x=0

By Example 3, we know that f is continuous at x = 0.
Let ¢ be area number such that ¢ < 0. Then f(c) = —c. Also

limf() = lim(=x=-c  (Why?)
Since !(erg f(x)= f(c), f iscontinuous at all negative real numbers.
Now, let ¢ be area number such that ¢ > 0. Then f(c) = c. Also
W00 = Jmx=c (Why?)
Since Lerlf(x) = f(c), f is continuous at all positive real numbers. Hence, f

iscontinuousat al points.
Example 8 Discuss the continuity of the function f given by f(xX) = x® + x> — 1.

Solution Clearly fisdefined at every real number canditsvalueat cisc®+ ¢2—1. We
also know that

limf(x) = lim(C+x*-1)=c®+c?-1
X—>C X—>C
Thus lim f (x) = f(c), and hencef iscontinuous at every real number. Thismeans
X—>C

fisacontinuous function.
. . . . 1
Example 9 Discuss the continuity of the function f defined by f (x) = ;L x# 0.

Solution Fix any non zero real number ¢, we have

Iimf(x):limlz1

X—>C X—=>C X C

1
Also, sinceforc=0, f(C) =E,wehave lim f (x) = f (c) and hence, fiscontinuous
X—>C

at every point in the domain of f. Thusf isa continuous function.
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Wetakethisopportunity to explain the concept of infinity. Thiswedo by analysing

1
thefunction f (x) = X near x = 0. To carry out thisanalysiswe follow the usual trick of

finding the value of the function at real numbers closeto 0. Essentially wearetrying to
find the right hand limit of f at 0. We tabulate thisin the following (Table 5.1).

Table5.1

x | 1| 03 | 02| 01=10"| 001=102| 0.001=10° 10
fox)| 1]3333.] 5 10 100=1C° | 1000=10°| 10n

We observe that as x gets closer to 0 from the right, the value of f(x) shoots up
higher. Thismay be rephrased as: the value of f (x) may be made larger than any given
number by choosing a positive real number very closeto 0. In symbols, we write

lim f(X)=+o

Xx—0"
(to be read as: the right hand limit of f (x) at 0 is plusinfinity). We wish to emphasise
that + « isNOT area number and hencetheright hand limit of f at 0 doesnot exist (as
areal number).
Similarly, the left hand limit of f at 0 may be found. The following table is self
explanatory.

Table5.2
X -1 -03 | -02| -10% - 107 -10% | — 10"
f(x) | —1 —3.333..] -5 -10 —10? - 10° - 10"
From the Table 5.2, we deduce that the Y

value of f(X) may be made smaller than any
given number by choosing a negative real
number very close to 0. In symboals,
we write

lim f(X)=—o0

X—>0" X’
(toberead as: theleft hand limit of f(X) at Ois
minusinfinity). Again, wewish to emphasise
that — o isNOT areal number and hence the
left hand limit of f at 0 doesnot exist (asareal
number). The graph of thereciprocal function
givenin Fig 5.3 isageometric representation Y’
of the above mentioned facts. Fig5.3
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Example 10 Discuss the continuity of the function f defined by

; B X+ 2,if x<1
X = x—2,if x>1

Solution The function f isdefined at all points of thereal line.
Case 11f c <1, thenf(c) = c + 2. Therefore, lim f (x)=lim f(x+2)=c+2

Thus, fiscontinuousat all real numberslessthan 1.

Case 2 If ¢ > 1, then f(c) = ¢ — 2. Therefore, Y
1,3)

Imf(x)=limXx-2)=c-2=1(c)
X—>C X—>C
Thus, fiscontinuous at all pointsx > 1.

Case 3 If ¢ = 1, then the left hand limit of f at

x=1is X

IirI] f(x)= Iir?(x+2)=1+ 2=3
Theright hand limitof fat x=11is +

limf(x)=Ilim(x-2)=1-2=-1 y
x—1" x—1"

Sincetheleft and right hand limitsof fat x =1 Fig 5.4
do not coincide, f isnot continuousat x= 1. Hence
x=1listheonly point of discontinuity of f. The graph of thefunctionisgiveninFig5.4.
Example 11 Find all the points of discontinuity of the function f defined by
X+ 2,if x<1
f(x) = 0, if x=1
X—2,if x>1

Solution Asinthe previous example wefind that f
is continuous at all real numbers x = 1. The left
handlimitof fatx=1is

Iinl] f(x)= Iinl](x+2):1+2:3
Theright hand limitof fat x=11is
Iirg f(x)= Iirg(x—2)=1—2=—1

1,3)

Since, theleft and right hand limitsof fatx =1
do not coincide, fisnot continuousat x= 1. Hence v
x = 1 isthe only point of discontinuity of f. The _
graph of the function isgiveninthe Fig 5.5. Fig 5.5
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Example 12 Discuss the continuity of the function defined by

~ X+2,if x<0
f) = —Xx+2,if x>0

Solution Observe that the function isdefined at all real numbers except at 0. Domain
of definition of thisfunctionis

D,uD,where D, ={xe R:x<0} and
D,={xe R:x>0}

Case 1 If ce D, then limf(x)=lim (x + 2)
X—>C X—>C

=c+2=f(c) and hencefiscontinuousin D,.

Case 2 If ce D,, then limf (x)=lim (- x+ 2)
X—C X—C

=—c+2=f(c) and hence f is continuous in D,
Sincefiscontinuousat all pointsinthe domain of f,
we deduce that f is continuous. Graph of this A
function isgiven in the Fig 5.6. Note that to graph Fig5.6
thisfunction we need to lift the pen from the plane

of the paper, but we need to do that only for those points where the function is not
defined.

Example 13 Discuss the continuity of the function f given by

X, if x=0 »
09 = X2, if x<0 (_’):

Solution Clearly the function is defined at

every real number. Graph of the function is “L1)

giveninFig5.7. By inspection, it seems prudent ’

to partition the domain of definition of f into X<

three digoint subsets of thereal line.

Let D,={xe R:x<0}, D,={0} and
D,={xe R:x>0}

Case 1 Atany pointinD,, we have f(x) = x* and it is easy to see that it is continuous
there (see Example 2).

Case 2 Atany pointin D, we have f(x) = x and it is easy to see that it is continuous
there (see Example 6).
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Case 3 Now we analyse the function at x = 0. The value of the function at 0 isf(0) = 0.
Theleft hand limit of fatOis

lim f(x)=limx*=0?=0

X—0" X—0"

Theright hand limitof fat Ois
limf(X)=limx=0

x—0" x—0"

Thus lim f (x) =0= f(0) and hence f is continuous at 0. This means that f is
x—0

continuous at every point in itsdomain and hence, f isa continuous function.
Example 14 Show that every polynomial function is continuous.
Solution Recall that a function p is a polynomial function if it is defined by
p(x) =a,+a x+...+a x"for some natural number n,a #0and a € R. Clearly this
function is defined for every real number. For afixed real number c, we have

lim p(x) = p(c)

X—C

By definition, p is continuous at ¢. Since ¢ isany real number, p is continuous at

every real number and hence p is a continuous function.

Example 15 Find all the pointsof discontinuity of the greatest integer function defined
by f(X) = [X], where [X] denotes the greatest integer less than or equal to x.

Solution First observe that f is defined for al real numbers. Graph of the function is
givenin Fig 5.8. From the graph it looks like that f is discontinuous at every integral
point. Below we explore, if thisistrue.

Y

/

0,3 T *—0
02T *—o

0,1) + e—o
-3,0) 1,0) 2,0) (4,0)

a0 (20 —:1,0 0
4,0) (-2,0) (-1,0) 0.-1) 30 G0

—o +(0,-2)

X'¢

—o0 T 0,-3)

N
Yl
Fig5.8
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Case 1 Let c bearea number which isnot equal to any integer. It is evident from the
graph that for al real numbers close to ¢ the value of the function isequal to [c]; i.e.,

lim f (x) =lim[x] =[c].Alsof(c) = [c] and hencethefunctioniscontinuousat all real

numbers not equal to integers.
Case 2 Let ¢ be an integer. Then we can find a sufficiently small real number
r>0suchthat [c—r] =c—1whereas[c+r] =cC.
This, intermsof limits mean that
limf(x)=c-1, limf(x)=c
X—>C X—C
Since these limits cannot be equal to each other for any c, the function is
discontinuous at every integral point.
5.2.1 Algebra of continuous functions

In the previous class, after having understood the concept of limits, we learnt some
algebraof limits. Analogously, now wewill study somealgebraof continuousfunctions.
Since continuity of afunction at apointisentirely dictated by thelimit of the function at
that point, it is reasonable to expect results analogous to the case of limits.

Theorem 1 Suppose f and g be two real functions continuous at a real number c.
Then

(1) f+giscontinuousat x=c.
(2) f—giscontinuousat x = c.
(3) f.giscontinuousat x =c.

4 (i) is continuous at x = ¢, (provided g(c) # 0).
g

Proof We are investigating continuity of (f + g) at x = c. Clearly it is defined at
x = ¢. We have

lim(f +g)(x)

Lim[f(x)+g(x)] (by definition of f+ g)

Lim f(x)+ !(Im g(x)  (by thetheorem on limits)
f(c) + g(c) (asf and g are continuous)
(f+9) (¢ (by definition of f + g)
Hence, f + g is continuous at x = c.

Proofs for the remaining parts are similar and left as an exercise to the reader.
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Remarks

(i) Asaspecial caseof (3) above, if fisaconstant function, i.e., f(x) = A for some
real number A, then the function (A . g) defined by (A . @) (X) = A . g(X) isalso
continuous. In particular if A =—1, the continuity of fimplies continuity of —f.

(i) Asaspecial case of (4) above, if f isthe constant function f(x) = A, then the

function % defined by %(x) :ﬁ is also continuous wherever g(x) # 0. In

particular, the continuity of g impliescontinuity of % .

The above theorem can be exploited to generate many continuousfunctions. They
alsoaidindeciding if certain functions are continuous or not. The following examples
illustratethis:

Example 16 Prove that every rational function is continuous.

Solution Recall that every rational function f is given by
f09=2%, 090
a(x)
where p and g are polynomial functions. The domain of fisall real numbers except
pointsat which giszero. Since polynomial functionsare continuous (Example 14), fis
continuous by (4) of Theorem 1.

Example 17 Discuss the continuity of sine function.

Solution To see this we use the following facts
limsinx=0

x—0

We have not proved it, but isintuitively clear from the graph of sin x near 0.

Now, observe that f(x) = sin X is defined for every real number. Let ¢ be areal
number. Put x = ¢ + h. If x - ¢ we know that h — 0. Therefore
limf(x) = limsinx
X—C

X—C

limsin(c+ h)

h—0

= lim[sinccosh+ coscsinh]
h—0

= lim[sinccosh] + lim[coscsinh]
h—0 h—0

=sinc+0=sinc=f(c)
Thus lim f(x) =f(c) and hence f is a continuous function.
X—C
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Remark A similar proof may be given for the continuity of cosine function.

Example 18 Prove that the function defined by f (x) = tan x is a continuous function.

Solution The function f(X) =tan x = % . Thisisdefined for all real numbers such

. T . . .
that cos x # 0, i.e.,, X # (2n +1)§ . We have just proved that both sine and cosine
functions are continuous. Thus tan x being a quotient of two continuous functionsis
continuous wherever it isdefined.

An interesting fact is the behaviour of continuous functions with respect to
composition of functions. Recall that if f and g are two real functions, then

(fog) (¥ =f(g(x)
is defined whenever the range of g is a subset of domain of f. The following theorem
(stated without proof) captures the continuity of composite functions.

Theorem 2 Suppose f and g are real valued functions such that (f o g) is defined at c.
If giscontinuous at ¢ and if f is continuous at g (c), then (f o g) is continuous at c.

Thefollowing examplesillustrate thistheorem.
Example 19 Show that the function defined by f (x) = sin (x?) isacontinuous function.

Solution Observe that the function is defined for every real number. The function
f may be thought of as a composition g o h of the two functions g and h, where
g (X) =sin xand h(x) = x2. Since both g and h are continuous functions, by Theorem 2,
it can be deduced that f is a continuous function.

Example 20 Show that the function f defined by
f() =1—x+[x]l,
where x isany real number, is acontinuous function.
Solution Defineg by g(x) =1 —x+ |x|and h by h(x) = |x| for al rea x. Then
(hog) (¥) =h(g(x)
=h(-x+[x)
=[1=x+ [x[|=f()

In Example 7, we have seen that h is a continuous function. Hence g being a sum
of apolynomial function and the modulus function is continuous. But then f being a
composite of two continuous functionsis continuous.
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|EXERCISE 5.1

Provethat the function f (X) = 5x —3iscontinuousat x =0, at x=—3and at x = 5.
Examine the continuity of the functionf(x) =2x—-1atx= 3.
Examinethefollowing functionsfor continuity.

1
(8 f(9=x-5 0 109= ¢

_x*-25
© 19 =—7%

Prove that the function f(X) = x" is continuous at x = n, where n is a positive
integer.
Isthe function f defined by
X, if x<1
f)=1. .
5 if x>1
continuous at X = 0? At x = 1? At x = 2?

(d) f()=Ix-5]|

Find all points of discontinuity of f, wheref isdefined by

6.

8.

10.

12.

13.

oxs 3 if x<2 [x]+3, if x<-3
+ 1 _ .
f(x)= _ 7. f(x)=4 -2%, if —3<x<3
2x-3, if x>2 .
6x+2, if x>3
X it w0 X it x<o0
f(X)=1 x 9. f(x)=4|x|
0, if x=0 -1 if x=0
x+1, if x>1 x2-3 if x<2
f(><)={2 . 11. f(x)=
X“+1if x<1 X2 +1, if x>2

10 1
f(x):{x 1 if x<1

X2, if x>1

Isthe function defined by
F(x) = X+ 5, ?f x<1
x-5, if x>1
acontinuousfunction?
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Discuss the continuity of the function f, where f is defined by

3 if0<x<1 2x%, if x<0
14. f(X)=<4, if 1<x<3 15, f(x)=<0, if 0<x<1
5, if 3<x<10 4x, if x>1
-2, if x<-1
16. f(x)=42x%, if —1<x<1
2, if x>1

17. Find the relationship between a and b so that the function f defined by
F(x) = ax+1, ?f x<3
bx+3, if x>3
iscontinuous at x = 3.
18. For what value of A isthe function defined by

2 . <
F(x) = A (X5 —2X), .|f x<0
4x+1, if x>0
continuous at x = 0? What about continuity at x = 1?

19. Show that the function defined by g (X) = x—[X] is discontinuous at all integral
points. Here [X] denotes the greatest integer less than or equal to x.

20. Isthefunction defined by f(X) = x2—sin x + 5 continuous at X = ?
21. Discussthecontinuity of thefollowing functions:
(@ f(X)=sinx+ cosx (b) f(X) =sinx—cosx
(c) f(X)=sinx.cosx
22. Discussthe continuity of the cosine, cosecant, secant and cotangent functions.
23. Findal pointsof discontinuity of f, where
sinx
f()=1 x
x+1, if x=0

, if x<0

24. Determineif f defined by

1.
x?sin=, if x=0
f(x)= X
0, if x=0

isacontinuousfunction?
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25. Examinethe continuity of f, where f is defined by
£(x) = Sin X—CosX, i.f x#0
-1, if x=0
Find thevalues of k so that thefunction f iscontinuous at theindicated point in Exercises
2610 29.

kcosx . T
o if x;tz .
26. f(x)=4T" ax=
3 if x=_
2
ko?, if x<2
f X) = ’ =
27. (¥ {& . atx=2
F(x) = kx+1, if x<=«
28. "~ |cosx, if x>n AX=m
£(x) = kx+1, if x<5
29. “l3x-5, if x>5 ~ AX=D
30. Find the values of a and b such that the function defined by
5 if x<2
f(x)=<ax+b, if 2<x<10
21 if x>10

isacontinuousfunction.
31. Show that the function defined by f (X) = cos (X?) is a continuous function.
32. Show that the function defined by f(X) = | cos x| is a continuous function.
33. Examinethat sin |x|isacontinuousfunction.
34. Find all the points of discontinuity of f defined by f(x) = |x|—|x+ 1|.

5.3. Differentiability

Recall thefollowing facts from previous class. We had defined the derivative of area
function asfollows:

Supposefisareal functionand cisapointinitsdomain. Thederivativeof fat cis
defined by

i e+ =

h—0 h
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d
provided this limit exists. Derivative of f at c is denoted by f ’(c) or &( f(X) .. The

function defined by

f,(x):Lingw

wherever the limit exists is defined to be the derivative of f. The derivative of f is

d . dy .
denoted by f’(x) or &(f(x)) or if y = f(x) by or y". The process of finding

derivative of afunction is called differentiation. We also use the phrase differentiate
f(x) with respect to x to mean find f’(x).
The following rules were established as a part of algebra of derivatives:
Q) uUzxzvw=uzVv
(2) (uv) =uv+ w (Leibnitz or product rule)

3 (Ej - u’v—2uv , wherever v = 0 (Quotient rule).

v %
Thefollowing table givesalist of derivatives of certain standard functions:
Table5.3
f(x) X" sinx COS X tan x
f’(x) == COS X —snx | sec?x

Whenever we defined derivative, we had put a caution provided the limit exists.
Now the natural questionis; what if it doesn’t? The questionisquite pertinent and sois

f(c+h)-

itsanswer. If lim f(©) does not exist, we say that fis not differentiable at c.

h—0
In other words, we say that afunction fisdifferentiable at apoint cinitsdomainif both

lim f(c+h)—f(c) and Tim f(c+h)—f(c)
h—0~ h h—0"
to bedifferentiablein aninterval [a, b] if itisdifferentiable at every point of [a, b]. As
in case of continuity, at the end pointsa and b, wetaketheright hand limit and | eft hand
limit, which are nothing but left hand derivative and right hand derivative of thefunction
at a and b respectively. Similarly, afunction is said to be differentiable in an interval
(a b) if itisdifferentiable at every point of (a, b).

arefiniteand equal. A functionissaid
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Theorem 3 If afunctionfisdifferentiable at apoint ¢, thenitisalso continuous at that
point.
Proof Sincef isdifferentiable at c, we have

im0 =TO _ ¢
X—-C

X—C

But for x # ¢, we have

(x) - f(c)

f(x) —f(c) = f c .(x-0)
Therefore Lim[f(x)— f(o)] = Lim[w.(x—c)}
or lim{f (] -lim[f ()] = Iim{—f(x))(:;(c)}.Iim[(x—c)]
=f’(c).0=0
or Llng f(x) =f(c)

Hence f is continuous at X = c.
Corollary 1 Every differentiable function is continuous.

We remark that the converse of the above statement is not true. Indeed we have
seen that the function defined by f (X) = | x| is a continuous function. Consider the left
hand limit

lim f(0+h)- f(0) :—_h

h—0~ h h

=-1
Theright hand limit

lim 2 @+M-1Q _h_,
h—0" h h

. . - . f(0+h)-f(0)
Since the above left and right hand limits at O are not equal, |hILT(1J 0

does not exist and hence f is not differentiable at 0. Thus f is not a differentiable
function.
5.3.1 Derivatives of composite functions

To study derivative of composite functions, we start with an illustrative example. Say,
we want to find the derivative of f, where

f(x) =(2x+ 1)
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Oneway isto expand (2x + 1)% using binomial theorem and find the derivative as
apolynomial function asillustrated below.

d o d .
0= [(2x+1)%]

= di (8x% +12x% + 6x+1)
X

=24x% + 24X+ 6

=6 (2x + 1)2
Now, observe that f(x) =(hog) (X
where g(x) =2x+ 1and h(x) = x3. Put t = g(x) = 2x + 1. Then f(x) = h(t) = t%. Thus
df dh dt
o - B@x+1p=3@x+1p.2=80.2= o

The advantage with such observationisthat it simplifiesthe calculation infinding
the derivative of, say, (2x + 1)'®. We may formalise this observation in the following
theorem called the chain rule.

Theorem 4 (Chain Rule) Let f beareal valued function which is a composite of two
dt d
functionsuandv;i.e, f=vou. Supposet=u(x) and if both pv and d—: exist, we have

df dv dt
dx  dt ox
We skip the proof of thistheorem. Chain rule may be extended asfollows. Suppose
fisareal valued function which is a composite of three functionsu, vand w; i.e.,

f=(wou)ov.Ift=v(x) and s=u(t), then

df _d(wou) dt dw ds dt

dx  dt dx ds dt dx

provided all the derivativesin the statement exist. Reader isinvited to formulate chain
rule for composite of more functions.

Example 21 Find the derivative of the function given by f(x) = sin (x?).

Solution Observe that the given function is a composite of two functions. Indeed, if
t=u(x) = x?and v(t) = sin t, then
f(X) =(vou) (X) =v(ux) =v(x?) =sin x?
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Put t = u(x) = X2 Observe that % =cost and % = 2x exist. Hence, by chain rule
X

df  dv dt
— = —-—=Cost-2X
dx dt dx
It isnormal practice to expressthe final result only in terms of x. Thus
df
—— = cost - 2x = 2X COSX?
dx
Alternatively, We can also directly proceed as follows:

y=sn(x) = ﬂzi(sin X?)
dx dx

d
= C0S X2 ™ (X3 = 2x cos x?

Example 22 Find the derivative of tan (2x + 3).
Solution Let f(X) =tan (2x + 3), u(X) = 2x + 3 and v(t) = tant. Then
(vou) (X) =v(u(x)) =v(2x + 3) =tan (2x + 3) = f(X)

dv
Thusfisacomposite of two functions. Putt = u(x) = 2x+ 3. Then ry =sec’t and

% =2 exist. Hence, by chainrule

X
AN X oe? (2x+3
dx dt dx

Example 23 Differentiate sin (cos (X?)) with respect to x.

Solution Thefunction f (X) = sin (cos (x?)) isacomposition f (X) = (wo v o u) (x) of the

three functions u, v and w, where u(x) = x?, v(t) = cost and w(s) = sin s. Put

t=u(x) = x> and s = v(t) = cos t. Observe that d—vv:coss,ﬁz—sintand E: 2X
ds dt dx

exist for al real x. Hence by a generalisation of chain rule, we have

—— =(cos9) . (—sint). (2x) = —2x sin x? . cos (cos X?)
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Alternatively, we can proceed as follows:
y = sin (cos x?)

dy_d 2 = 5 9 2
Therefore o ox sin (cos X?) = cos (cos X?) X (cos x?)
= cos (cos X?) (— sin x?) d €9
dx
=—sin x2 cos (cos X?) (2X)
=—2X sin X2 cos (Cos X?)
|EXERCISE 5.2|
Differentiate the functions with respect to x in Exercises 1 to 8.
1. sin(x*+5) 2. cos (sin x) 3. sin(ax+b)
sin (ax+b) _
4. sec (tan ({/x)) 5. cos(cx+d) 6. cos X . sir? (X°)
2+/cot(x?) 8. cos(Vx)

Prove that the function f given by

f(x) =|x-1|,xe R
isnot differentiable at x = 1.

10. Provethat the greatest integer function defined by

f(x) =[x],0<x<3
isnot differentiableat x =1 and x = 2.

5.3.2 Derivatives of implicit functions

Until now we have been differentiating various functions given in the formy = f (x).
But it is not necessary that functions are always expressed in this form. For example,
consider one of the following relationships between x and y:

X-y-n=0

X+snxy—-y=0
In the first case, we can solve for y and rewrite the relationship asy = x —m. In
the second case, it does not seem that thereisan easy way to solvefor y. Nevertheless,
there is no doubt about the dependence of y on x in either of the cases. When a
relationship between x and y is expressed in a way that it is easy to solve for y and
write y = f(X), we say that y is given as an explicit function of x. In the latter case it
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isimplicit that y isafunction of x and we say that the relationship of the second type,
above, gives function implicitly. In this subsection, we learn to differentiate implicit
functions.

o dy
Example 24 Find — if x—y =m.

dx
Solution One way isto solve for y and rewrite the above as
Yy=X—T
dy
But th — =1
ut then v
Alternatively, directly differentiating the relationship w.r.t., X, we have
d dn
—(xX— - —
OIX( y) v

d
Recall that &n means to differentiate the constant function taking value &

everywhere w.r.t., x. Thus

d d
OIX() OIX(y)
whichimpliesthat
dy _ax_,
dx dx
. dy . o
Example 25 Flnd&,|fy+smy—cosx.

Solution We differentiate the relationship directly with respect to x, i.e.,

dy d, . d

—+—(dny) = —(cosX

dx dx( Y) dx( )
whichimpliesusing chainrule

dy dy .

—+C0Sy:— =—

dx y dx snx

- dy ~ sinx

Thisgives & - 1tcosy

where yz@n+1) =
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5.3.3 Derivatives of inverse trigonometric functions
We remark that inverse trigonometric functions are continuous functions, but we will
not prove this. Now we use chain rule to find derivatives of these functions.

Example 26 Find the derivative of f given by f(X) = sin™! x assuming it exists.
Solution Lety =sin® x. Then, x=siny.
Differentiating both sides w.r.t. X, we get

1 dy
=cosy ——
dx

d 11
dx cosy cos(sintx)

whichimpliesthat

Observethat thisis defined only for cosy # 0, i.e., sim?t x # —gg e, x==-1,1,

i.e,xe (-1,1).
To makethisresult abit more attractive, we carry out the following manipul ation.
Recall that for x e (—1, 1), sin (sint X) = x and hence

coy=1-(sny)2=1-(sin(sinx))2=1-x?

Also, sincey e (—g%) cosy is positive and hence cosy = /1_ x2

Thus, for x e (-1, 1),
dy 1 1

dx cosy J1_x2

Example 27 Find the derivative of f given by f(x) = tan™ x assuming it exists.

Solution Lety =tan x. Then, x = tan y.
Differentiating both sides w.r.t. X, we get

1:sec2y&

whichimpliesthat

o 11 1 1
dx sec’y 1+tan’y 1+ (tan(tanx))? 1+ X
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Finding of thederivativesof other inversetrigonometric functionsisleft asexercise.
Thefollowing table givesthe derivatives of theremaininginversetrigonometric functions
(Table5.4):

Table5.4
f(x) cosx cotx sec™x cosecx
-1 -1 1 -1
f (X) \/1—X2 1+X2 X‘,XZ -1 X\/X2 -1
Domainof f* [ (-1, 1) R (=0, =1) U (1, 00) | (=0, —1) U (1, )
| EXERCI SE 5.3|
Find & inthefollowing:
dx

1. 2x+ 3y=sinx 2. 2x+ 3y=sdginy 3. ax+ by?=cosy
4, xy+y?’=tanx+y 5 X+ xy+y*=100 6. X3+ Xy +xy?+ =81

2X
7. sinfy+ cosxy=m 8. sin’x+cosly=1 9. y:sin—l( j

1+ X2
_y3 1 1
0. y:tan_{ffx_Xj, Lt

_ 2
11. y=cos‘1(1 X2J10<X<l

_ 2
12. y=sin‘1(1 XZJ,0<X<1

13. y:cos‘l( 2x2),_1< x<1

14 y=sint(21-x) - L ox< L

15 y—sec‘l( 1 j0<x<i
' J2
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5.4 Exponential and L ogarithmic Functions

Till now we have learnt some aspects of different classes of functionslike polynomial
functions, rational functions and trigonometric functions. In this section, we shall
learn about a new class of (related) Y
functionscalled exponential functionsand

logarithmic functions. It needs to be
emphasized that many statements made
inthissection are motivational and precise
proofs of these are well beyond the scope
of thistext.

The Fig 5.9 gives a sketch of
y=1,00=xy=10 =% y=1)=x
andy=f,(x) = x*. Observethat the curves
get steeper as the power of X increases.

Steeper the curve, faster is the rate of v
growth. What thismeansisthat for afixed Y
increment in the value of x(> 1), the Fig 5.9

increment in the value of y = f (X) increases as nincreases for n =1, 2, 3, 4. It is
conceivable that such a statement istrue for all positive values of n, wheref_(x) = x".
Essentially, this means that the graph of y = f_(X) leans more towards the y-axis as n
increases. For example, consider f, (x) = x' and f (x) = x*°. If x increases from 1 to
2, f, increases from 1 to 2'° whereas f _ increases from 1 to 2%, Thus, for the same
increment in x, f . grow faster than f .

Upshot of theabovediscussionisthat the growth of polynomial functionsisdependent
on the degree of the polynomial function — higher the degree, greater is the growth.
Thenext natural questionis: Isthere afunction which growsfaster than any polynomial
function. The answer isin affirmative and an example of such afunctionis

y =f(x) = 10~
Our claim isthat this function f grows faster than f_(x) = x" for any positiveinteger n.
For example, we can prove that 10* grows faster than f  (X) = x'°. For large values
of x like x = 10°, note that f | (x) = (10°)*® = 10°° whereas f(10%) = 10° = 10,

Clearly f(x) is much greater than f  (x). It is not difficult to prove that for all
x>10% f(x) >, (). But wewill not attempt to give aproof of thishere. Similarly, by
choosing large values of x, one can verify that f(X) grows faster than f_(x) for any
positiveinteger n.
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Definition 3 The exponential function with positive base b > 1 isthe function
y=f() =b
Thegraph of y = 10 isgiveninthe Fig 5.9.
It isadvised that the reader plotsthis graph for particular values of blike 2, 3 and 4.
Following are some of the salient features of the exponential functions:
(1) Domain of the exponential functionis R, the set of all real numbers.
(2) Range of the exponential function isthe set of all positive real numbers.
(3) The point (0, 1) is aways on the graph of the exponential function (thisis a
restatement of the fact that b° = 1 for any real b > 1).
(4) Exponential function is ever increasing; i.e., as we move from left to right, the
graph rises above.

(5) For very large negative values of x, the exponentia functionisvery closetoO. In
other words, in the second quadrant, the graph approaches x-axis (but never
meets it).

Exponential function with base 10 is called the common exponential function. In
the Appendix A.1.4 of Class X, it was observed that the sum of the series

isanumber between 2 and 3 and is denoted by e. Using this e asthe base we obtain an
extremely important exponential functiony = e~

This is caled natural exponential function.

It would beinteresting to know if theinverse of the exponential function existsand
has niceinterpretation. This search motivatesthe following definition.

Definition 4 Let b > 1 be areal number. Then we say logarithm of ato basebis x if
b*=a.

Logarithm of a to base b is denoted by log, a. Thuslog, a = xif b*=a. Letus
work with afew explicit examplesto get afed for this. We know 23 = 8. In terms of
logarithms, we may rewrite thisaslog, 8 = 3. Similarly, 10* = 10000 is equivalent to
saying log,, 10000 = 4. Also, 625 = 5% = 25% is equivalent to saying log, 625 = 4 or
log,, 625 =2.

On adglightly more mature note, fixing a baseb > 1, we may look at logarithm as
a function from positive real numbers to all real numbers. This function, called the
logarithmic function, is defined by

log,: R* = R
X — log x=y ifb=x
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Asbeforeif thebaseb = 10, we say it

is common logarithms and if b = e, then
we say it is natural logarithms. Often
natural logarithm is denoted by In. In this
chapter, log x denotes the logarithm
function to base g, i.e., In x will be written
assmply logx. TheFig5.10 givestheplots
of logarithm function to base 2, e and 10.

Some of the important observations

about the logarithm function to any base
b > 1 arelisted below:

(1) We cannot make a meaningful definition of logarithm of non-positive numbers

2
3
(4)

()

(6)

Two propertiesof ‘log’ functions are proved below:

D)

and hence the domain of log functionis R*.

y = log, x
y =log,x

y =log,;x

1,0

(=]

<

y

YI

Fig5.10

Therange of log function isthe set of all real numbers.
The point (1, 0) isaways on the graph of thelog function.

Thelog functionisever increasing,
i.e.,, as we move from left to right
the graph rises above.

For x very near to zero, the value
of log x can be made lesser than
any given real number. In other
words in the fourth quadrant the
graph approachesy-axis (but never
meets it).

Fig 5.11 givestheplot of y=e*and
y=Inx. Itisof interest to observe
that the two curves are the mirror

Fig5.11

images of each other reflected in theliney = x.

There is a standard change of base rule to obtain log, p in terms of log, p. Let
log, p= o, log, p=P andlog, a="y. Thismeansa* = p, b’ = p and b" = a.
Substituting the third equation in the first one, we have
(D) =b==p
Using thisin the second equation, we get
b? =p = b
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whichimplies B=oayoro= E. But then
Y

log, p
log,a

log, p =

(2) Another interesting property of the log function is its effect on products. Let
log, pa = o.. Then b* = pg. If log, p =B and log, g =, then b? = p and b" = g
But then b* = pq = bPby = bP +v

whichimpliesa. =+, i.e,
log, pg =log, p + log, g

A particularly interesting and important consequence of thisiswhen p=g. In
this case the above may be rewritten as

log, p* = log, p +log, p=2log p
An easy generalisation of this (left as an exercise!) is

log, p" =nlogp
for any positive integer n. In fact thisistrue for any real number n, but we will
not attempt to prove this. On the similar linesthe reader isinvited to verify

X
|09b; = log, x — log, y

Example 28 Isit true that x = €%* for all real x?

Solution Firgt, observethat the domain of log functionisset of al positivereal numbers.
So the above equation is not true for non-positive real numbers. Now, let y = %9 If
y >0, wemay takelogarithmwhich givesuslogy =log (€*¥) =log x. loge=log x. Thus
y = X. Hence x = €%9* is true only for positive values of x.

One of the striking properties of the natural exponential function in differential
calculusisthat it doesn’'t change during the process of differentiation. Thisis captured
in the following theorem whose proof we skip.

Theorem 5

d
(1) Thederivative of e w.r.t., xise i.e, &(ex) =€

d 1
(2) Thederivative of log x w.r.t., x is 1; i.e, —(logx)=—.
X dx X
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Example 29 Differentiate the following w.r.t. X:

(i) e~ (i) sin(logx),x>0 (iii) cos™ (&) (iv) eosx
Solution
(i) Lety=e™ Using chain rule, we have
dy , d B .
ol e ™ X)) =-—¢€
(i) Lety=sin(logx). Using chain rule, we have
dy d cos (logXx)
— = cos (logx)-— (logX) = ————
v (logx) dx( gx)
(i) Lety=cos? (&). Using chain rule, we have
ﬂ — _—1i ex): —€
dx  J1-(e)? dx 1- e
(iv) Lety=e¢e™s* Using chain rule, we have
dy _

o €. (-sinx)=—(dnx) e

| EXERCISE 54|

Differentiate the following w.r.t. x:

X

e 2 es'n’lx 3 ex3
snx ' :
4. din (tant %) 5. log (cos €) 6. e+e’ .. +e°
COSX
7. \/e&, x>0 8. log (logx),x>1 9 @, x>0

10. cos(logx +¢€), x>0

5.5. Logarithmic Differentiation

In this section, wewill learn to differentiate certain special class of functionsgivenin
theform

y =109 = [ue)]
By taking logarithm (to base €) the above may be rewritten as

logy = v(x) log [u(x)]
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Using chain rule we may differentiate thisto get

l.ﬂzv(x) i . U,(X) + \/(X) . IOg [U(X)]
y dx u(x)

whichimpliesthat

dy _ V(¥ (%)
dx_y{u(x) u'(X) +V'(X) Iog[u(x)]}

The main point to be noted in this method is that f(X) and u(x) must always be
positive as otherwisetheir logarithms are not defined. Thisprocessof differentiationis
known as logarithms differentiation and isillustrated by the following examples:

_ 2
Example 30 Differentiate ‘/w W.rt. X.
3X°+4x+5
x—3) (X*+4
Solution Let Y= w
(3x°“ +4x+5)

Taking logarithm on both sides, we have

1
logy= > [log (x—3) +log (% + 4) —log (3 + 4x + 5)]
Now, differentiating both sidesw.r.t. X, we get

1ay 1 1+2x_6x+4
y odx  2[(x-3) xX*+4 3x*+4x+5

dy Yy 1 N 2X 3 6Xx+4
dx 2| (x=3) x?+4 3x°+4x+5

1 /(x—3)(x2+4) 1 2x  6x+4
2\ 3% +4x+5 | (x-3) x*+4 3x%+4x+5

Example 31 Differentiate a w.r.t. X, where a is a positive constant.
Solution Lety = ax Then

or

logy=xloga
Differentiating both sidesw.r.t. X, we have
1dy

;& =loga



176 MATHEMATICS

dy |
or pvi yloga
Th a @) =al
us . =a‘loga
. d X d xloga xloga d
— = — = . I
Alternatively > (@) ™ ™) =e dx(x oga)

=el9a Joga=a*loga.
Example 32 Differentiate x3"%, x > 0 w.r.t. x.
Solution Let y = xsn*, Taking logarithm on both sides, we have

logy=sinxlogx

1 dy . d d .
—.— = sinx— (logX) + logx— (sin X
Therefore Y dx( gx) +log dx( )
EXC
or y ox = (smx);+ 0g X COSX
ﬂ = yl:ﬂ-i- cosxlogx}
or v »

inx| SINX
xs””{— + cosx log x}
X

Sinx— snx

X3 gnx+ X

-cosx log x

Example 33 Find % if y<+ X +x=ab,

Solution Given that y* + X/ + x* = aP.
Puttingu=y,v=xandw=x,wegetu+v+w=aP

Therefore %er_erd_w:O
dx dx dx
Now, u = y*. Taking logarithm on both sides, we have
logu=xlogy

Differentiating both sidesw.r.t. X, we have

- (D



CONTINUITY AND DIFFERENTIABILITY 177

1 du d d
—-— = x—(logy) +log y—(X
™ OIX( gy) gydx()
= xl-ﬂﬂogy-l
y dx
du X dy «| x dy
= _ul=-Z2+logy |=y| =—+lo
<0 o (ydx gyJ y {ydx QY} . (2
Alsov=x
Taking logarithm on both sides, we have
logv=ylog x
Differentiating both sides w.r.t. x, we have
1 dv d dy
—.— = y—(logx) + logx—
v dx ydx( 9%)+log dx
= y-£+logx-Q
X dx
dv y dy}
— = v| =+logx—
0 dx {x g dx
y dy}
= x| = +logx—=
L( g i .. (3
Agan w = X
Taking logarithm on both sides, we have
logw = x log x.
Differentiating both sides w.r.t. x, we have
1 dw d d
—.— = Xx—(logx) +logx-—(X
w dx dx(g) J dx()
= x-1+logx-1
X
i W 1+1
i.e. X =w (1+logXx)

=X (1 +log Xx) .. (4
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From (1), (2), (3), (4), we have

x dy (y dyj
I ——=+logy |+ x| = +logx— x -
y (ydx QYJ ” g i +x(1+logx)=0
-1 ﬂ - -1
or (X.yt+x.logXx) dX——xX(1+Iogx)—y.xY —-y*logy
dy —[y“logy+y.x"™"+x*(1+logX
Therfare dy _ —[y'logy Y. . (1+log x)]
dx X. Yy "+ x'log x
| EXERCISE5.5|
Differentiate the functions given in Exercises 1 to 11 w.r.t. X.
. o - 5 (x=1) (x-2)
. COSX.COS2X . CoS N (x-3) (x-4) (x-5)
3. (log x)eosx 4. x¢—2sinx
A
5 (x+3)2.(x+4)32.(x+5* 6. x+; + X X
7. (log X)* + Xloox 8. (sinxy*+sint \/x
0. xsnx 4 (Sn X)cosx 10 N +ﬂ'
' ' X2 -1
1
11, (xcos x)* + (Xxsinx)*
. dy . o .
Find i of the functions given in Exercises 12 to 15.
12. w+y=1 13. y=%
14. (cos x)¥ = (cos y)* 15. xy=ex-y

16. Findthederivative of thefunction givenby f(x) = (1 +x) (1 +x?) (1 + x*) (1 + x8)
and hence find f'(1).

17. Differentiate (X2 —5x + 8) (3 + 7x + 9) in three ways mentioned below:
(i) by using product rule
(i) by expanding the product to obtain asingle polynomial.
(iii) by logarithmic differentiation.
Do they dl give the same answer?
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18. If u, vand w are functions of x, then show that

d _du ey Y ey W
dX(u.v.w)—dxv.w u'dx'W u.vdx
intwo ways- first by repeated application of product rule, second by logarithmic

differentiation.

5.6 Derivativesof Functionsin Parametric Forms

Sometimestherelation between two variablesisneither explicit nor implicit, but some
link of athird variable with each of thetwo variables, separately, establishesarelation
between the first two variables. In such a situation, we say that the relation between
them isexpressed viaathird variable. Thethird variable is called the parameter. More
precisely, a relation expressed between two variables x and y in the form
x=f(t), y =g(t) is said to be parametric form with t as a parameter.

In order to find derivative of function in such form, we have by chainrule.

dy _ dy ox
dt ~ dx dt
dy
dy gt ( dx j
or I % whenever o #0
dt
dy g'(t) ( j .
— = = t and _f t ’
Thus Vil Tl ey =g'(t) (t) | [provided f'(t) # O]

Example 34 Find — dy ,ifx=acos6,y=asn6.

Solution Given that
X=acosh,y=asno

Theref & ino & 0
erefore qp - —asin®, o =acos

dy

dy _ E_ acoso

Hence dx = dx —asin®
do

=—coto
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Example 35 Find gi if x=at? y=2at.
Solution Given that x = at?, y = 2at

dx dy
So a =2at and pn =2a

dy
Q_Q_Za 1

o~ X 2at t
dt

Therefore

Example 36 Find gi if x=a(0+sn0),y=a(l-coso).

_ dx dy .
Solution We have 40 - a(l + cos 6), 4o a(sin 0)
dy
dy do asin® 0
O 7 _tan—
Therefore dx ~ dX a(l+cos6) 2
do

It may be noted here that i(?/ is expressed in terms of parameter only

without directly involving themain variablesxand y.

2 2 2
Example 37 Find ;ﬂ, if x3+y%=a3.
X

Solution Let x=acos® 0, y=asin® 0. Then
2 2 2 2
x3 +y3 = (acos’0)3 + (asin®0)3
2 2
= a3(cos’0+ (sin’0) =a3

2 2 2
Hence, x = a cos®0, y = a Sin®0 is parametric equation of x3 + y3 =as3
dx _ dy .
Now — =—3acos?0sn®and = =3asin’0 cosoO

do do
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dy
dy go 3asin®cos@ \/7
== —_tanf=- 3=
Therefore dx  dX —3acos’0sind X
do

Had we proceeded in implicit way, it would have been quite tedious.

EXERCISE 5.6

If x andy are connected parametrically by the equations given in Exercises 1 to 10,

without eliminating the parameter, Find 3:(/

1. x=2at’y=at 2. Xx=acosH,y=Dbcos6
4

3. X=sdint,y=cos2t 4. x:4t,y=;

5. X=c0s®—-cos20,y=sin0—sn20

sin’t y= cos’t
Jeos2t ' Jcos2t

6. x=a(®-snB),y=a(l+cos0) 7. x=

t
8. x:a(cost+|ogtan5)y:asint 9. x=asecO,y=btano

10. x=a(cos® +6snv), y=a(sin6—0 coso)

11, If x=\/a9”’“,y=\/a°°s’lt, showthat%:—l
X X

5.7 Second Order Derivative

Let y =f(x). Then
dy .,
™ = /(x) . (D

If f(X) isdifferentiable, we may differentiate (1) again w.r.t. X. Then, theleft hand

d(d
side becomes dx (d—ij which is called the second order derivative of y w.r.t. x and

d?y

is denoted by v The second order derivative of f(x) isdenoted by f”(X). Itisaso
X
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denoted by D*y or y” ory, if y = f(x). We remark that higher order derivatives may be
defined similarly.

d?y
Example 38 Find ? if y=x3+tanx.
X
Solution Given that y = @ + tan X. Then
&y = 3x% + sec? X
dx
d? d
Therefore S 2 (3¢ +sec’x)
dx dx

=BX+ 2SeC X . SeC X tan X = 6xX + 2 sec? X tan X

d?y

Example 39 If y = A sin X + B cos X, then prove that ?+ y=0.
X

Solution We have

Q—A Bs
- cosx—B sinx
an 2 _dx( cosx—B sinx)
=—Asinx—Bcosx=-y
d’y
Hence ¥+y—0
2
Example 40 If y = 3e* + 2e*, prove that %—5%+ 6y=0.
X X

Solution Given that y = 3e* + 2e*. Then

=66+ 667 = 6 (€ + )
d?y
Therefore e = 12e> + 18> = 6 (2> + 3e¥)
d’y . dy
Hence ¥—5& + 6y = 6 (26> + 3¢¥)

— 30 (& + &) + 6 (3% + 26%) = 0
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2
Example 41 If y = sin™ x, show that (1 — x?) d_g/_ xﬂ:o.
dx dx

Solution We have y = sin'*x. Then
dy _ 1
& J@-x)

or N x?) %:l
S i(\/(1— x?) .szo

dx dx
d?y dy d
Ja-x3) =2+ 2. = (Ja-x®))=0
o ( X)dx2+dx dx(( X))
d d 2X
or -2 Y- =0

d2
Hence (1-x%) d_z_ Yo

dx
Alternatively, Given that y = sintx, we have
1 .
_ 2)\2 _
yl—ﬂ,l.e-, (1-x2)y? =1
So 1-x%). 2y, + ¥; (0-2x)=0
Hence (1-x)y,—xy,=0
| EXERCISE 5.7
Find the second order derivatives of the functions given in Exercises 1 to 10.
1. xX*+3x+2 2. x*0 3. X.Cos X
4. logx 5. X logx 6. €'sin5x
7. e%cos 3x 8. tantx 9. log(logx)
10. sin(logx) 2

11. If y=5cosx—3sinx, prove that %+ y=0
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2
12. Ify=cos'x, Find %intermsofyalone.
X
13. Ify=3cos(logx) +4sin (log x), show that Xy, + xy, +y=0
d2
14. If y = Ae™ + Be™, show that KZ_(W n)%+ mny =0

d2
15. If y = 500€™ + 600e™, show that K& 49y

16. fer(x+1)=1 showthatd—zy—(ﬂ)2
' - ax®  \dx

17. Ify = (tanm'x)? show that (x* + 1)y, + 2x (x* + 1) y, = 2

5.8 Mean Value Theorem

In this section, we will state two fundamental results in Calculus without proof. We
shall also learn the geometric interpretation of these theorems.

Theorem 6 (Rolle’'s Theorem) Let f: [a, b] — R be continuous on [a, b] and
differentiable on (a, b), such that f(a) = f(b), where a and b are some real numbers.
Then there exists some ¢ in (a, b) such that f’(c) = 0.

InFig5.12 and 5.13, graphsof afew typical differentiable functions satisfying the
hypothesis of Rolle'stheorem are given.
Y

/

Fig5.12 Fig5.13

Observe what happens to the slope of the tangent to the curve at various points
between a and b. In each of the graphs, the slope becomes zero at |east at one point.
That is precisely the claim of the Rolle's theorem as the slope of the tangent at any
point on the graph of y = f (X) is nothing but the derivative of f (X) at that point.
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Theorem 7 (Mean Value Theorem) Let f: [a, b] — R be a continuous function on
[a, b] and differentiable on (a, b). Then there exists some ¢ in (a, b) such that

f(b)-f(a)
b-a
Observethat the Mean Value Theorem (MVT) isan extension of Rolle’stheorem.

L et us now understand ageometric interpretation of the MV T. The graph of afunction
y =f(X) isgiven in the Fig 5.14. We have aready interpreted f’(c) as the slope of the

f(b)-f(a)
b-a

is the slope of the secant drawn between (a, f(a)) and (b, f(b)). The MVT states that

thereisapoint cin (a, b) such that the slope of the tangent at (c, f(c)) is same as the

slope of the secant between (a, f(a)) and (b, f(b)). In other words, thereisapoint cin
(a, b) such that the tangent at (c, f(c)) is parallel to the secant between (a, f(a)) and

(b, £(0)).

f'(c) =

tangent to the curvey = f(X) at (c, f(c)). Fromthe Fig 5.14 it isclear that

Y
(b, £ (b))
\\
N (€. f(©)
\Qn
X'< 0O 7 s b > X
YI
Fig5.14

Example 42 Verify Rolle€'s theorem for the functiony =x2+2,a=—2and b= 2.

Solution Thefunctiony = x? + 2 iscontinuousin [— 2, 2] and differentiablein (-2, 2).
Also f(- 2) = f( 2) = 6 and hence the value of f(x) at — 2 and 2 coincide. Rolle's
theorem states that thereisapoint c € (— 2, 2), where f’(c) = 0. Since f’(x) = 2x, we
getc=0. Thusatc=0,wehavef(c)=0andc=0¢e (-2, 2).

Example 43 Verify Mean Value Theorem for the function f(X) = x2intheinterval [2, 4].

Solution Thefunction f (X) = X2 iscontinuousin[2, 4] and differentiablein (2, 4) asits
derivative f’(X) = 2xis defined in (2, 4).
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Now, f(2)=4andf(4)=16. Hence
f(b)-f(a) _16—4_6
b-a  4-2

MVT statesthat thereisapoint c € (2, 4) such that f’(c) = 6. But f ’(X) = 2x which
impliesc=3. Thusatc=3 e (2, 4), we havef’(c) = 6.

| EXERCISE 5.8]

1. Veify Rolle's theorem for the function f(X) = x2+ 2x -8, x e [-4, 2].

2. Examineif Rolle'stheorem is applicableto any of thefollowing functions. Can
you say some thing about the converse of Rolle'stheorem from these example?

(i) f(x) =[x] forxe [5, 9] (i) f(x) =[x] forxe [-2, 2]
(i) fx)=x2—=1forxe [1, 2]

3. If f:[-5, 5 — R isadifferentiable function and if f’(xX) does not vanish
anywhere, then prove that f(— 5) # f(5).

4. Verify Mean Value Theorem, if f(X) = X2 — 4x — 3 in the interval [a, b], where
a=landb=4.

5. Verify Mean Value Theorem, if f(X) = xX*—5x?2 — 3x in theinterva [a, b], where
a=landb=3. Findal ce (1, 3) for which f’(c) = 0.

6. Examinetheapplicability of MeanValue Theorem for all threefunctionsgivenin
the above exercise 2.

Miscellaneous Examples

Example 44 Differentiate w.r.t. X, the following function:

(@) \/3x+2+% (i) 6% 1+ 3cos Tt x (iii) log, (logx)
2x°+4
Solution

1 1 1
() Lety= V3x+2+———= (3x+2)2 + (¢ +4) 2

\N2X° +4

Note that thisfunction is defined at all real numbers x > —% . Therefore

dy

1 114 ( 1) , = d .,
==0Bx+2)? -—(X+2)+|—=|(2x°+4) 2 -—(2x"+4
- 5 (XA (| T (2 +4) 2 (244
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1 ! 1 3
E(3x+2) 2.(3) - ( )(2x2+4) 2.4x
B 3 B 2X
- 3
23X+ 2 (2X2+4)2

2
Thisisdefined for al rea numbers X>—§.

(i) Let y=e=*+3cos*x
Thisis defined at every real number in [-1,1] - {0} . Therefore

1

dy_ sec?x
© 1- XZJ

&_

(%c x)+3[

= e (Zsecx— (%cx)) +3(

:25ecx(%cxtanx)ese°zx+3(— ! J
1-x2

_ Zseczxtanxes‘*zx+3[— 1 J
V1-x
Observe that the derivative of the given functionisvalidonly in [-1,1] - {0} as

the derivative of cos® x exists only in (— 1, 1) and the function itself is not
defined at 0.

i) Lety=log, (logx) = %

The function is defined for all real numbers x > 1. Therefore
dy 1 d

v = @&UOQ (logx))

L1 9 ogx
Iog7 Iogx dx
1
~ xlog7logx

(by change of base formula).
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Example 45 Differentiate the following w.r.t. x.

: o N 4 sinx L 2"*1j
(i) cos™*(sinx) (i) tan (1+cosx) (iii) sin [1+4X
Solution

(i) Letf(x)=cos™*(sinx). Observethat thisfunctionisdefined for al real numbers.
We may rewrite this function as

f(x) =cos™ (sin X)

ek

T

=——X
2
Thus f'(x) =—1.
(i) Let f(x) = tan- ( Snx j Observe that this function is defined for al real
1+ cosx

numbers, where cos x = — 1, i.e,, at al odd multiplies of . We may rewrite this

functionas
sinx
= tan‘l( J
f(x) 1+ cosx

J3)={)

20082 X
2

— tan! tan(zﬂz5
2 2

= tan

: 1
isnot equal to zero. Thusf’(x) = 5

X+1

(i) Letf(x)=sin? 2 . Tofind the domain of thisfunction we need to find al
1+ 4"
+

2x+l

xsuch that —1< —<1. Since the quantity in the middle is always positive,

1+4
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X+1

we need to find all x such that 2
1+4

< 1,i.e,dl xsuchthat 22**< 1+ 4 We

X =

. . 1 N .
may rewrite this as 2 < > + 2 which is true for al x. Hence the function

is defined at every real number. By putting 2* = tan 0, this function may be

rewritten as
o _2x+l:|
f(x) = sin™
) |1+ 4"
B X
:Sin_l 2 22:|
[ 1+(29)
_1_ 2tan6 :|
| 1+tan®0
=sin! [sin 20]
=20 = 2 tan"! (2)
;Z.di(zX)
1+(2¢)" dx
2

= -(2¥)log 2
1+4X( Jleg

_ 2"!log2
S 14+4

= sin

Thus f/(x) = 2

Example 46 Find f’(x) if f(X) = (sin x)s"* for all 0 < x < m.

Solution The function y = (sin x)$"* is defined for all positive real numbers. Taking
logarithms, we have

logy=log (sinx)s"™ =sinxlog (sinX)

1d_ d (sinxlog (sin x))
ydx dx g

. . 1 d,.
=cosxlog (sinx) + shx. ——-—(sinX)
sinx dx

=cosx log (sin X) + cos X
= (1 +log (sinx)) cosx
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d
Thus &y =y((1 +log (sin x)) cosx) = (1 + log (sin X)) ( sin X)S"* cos X

. . d
Example 47 For a positive constant a find &y , Where

ol 1 a
y=a !, and x:(t+¥j
Solution Observe that both y and x are defined for all real t # 0. Clearly

1
y — i(aH%) — at ti(t_,_%j.k)ga

dt ot dt
1
—a t(1—ti2)loga
a-1
- dx 1 d 1
Smilarly i a t+E o t+¥

"

dx
r #z0onlyiftz+1 Thusfort==+1,

dy t+:t|'(1 1)|
ay a -~ 1|loga
dy _dt _ )

dx dx 1P+ 1
FE

1
t+=
a tloga

a-1
aft+1]
t

Example 48 Differentiate sin? X w.r.t. e~s,

Solution Let u (X) = sin?x and v (x) = e*s*, We want to find %: dU/dX. Clearly

dv dv/dx

%—2' dg— Cos X ] — ] COS X
I Sin X cos X an dx_e (-sinx)=—(sinx) e
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du 2sinxcosx  2cosX

Thus — = —
dv  —sinxe™* goosx

Miscellaneous Exercise on Chapter 5

Differentiate w.r.t. x the function in Exercises 1 to 11.

1. (3% -9 +5)° 2. sin*x+ cos X
3. (5x)3cos 4. sint(x 4/x),0<x<1
cos X
5. ,—2<X<2
N2X+7
\/1+sinx+\/1—sinx} T
cot™ ey
6 L/l+sinx—\/1—sinx USXS,
7. (log x)'o9x, x > 1
8. cos(acosx + b sinx), for some constant a and b.
9. (Sin X —cos x) (snx-cosx) E<x<E

4 4
10. X+ x+a+ a3 forsomefixeda>0and x>0

11. sz_3+(x_3)x2 ,forx>3

12. Find &, ify=12 (1= cost), x=10 (t—sint), —~<t <X
ox 2 %2

13. Find(?—di,ify:sin—lx+sin—l 1-x%2,-1<x<1
14, If x{1+y+y+1+x=0,for,—1<x<1, provethat
dy 1

(14 %)
15. If (x—a)?+ (y—h)?=c? for some c > O, prove that

P
{1+ (dy) T
dx
d’y
dx?
is a constant independent of a and b.
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16.

17.

18.

19.

20.

21.

22.

23.

MATHEMATICS

dy _ cos?(a+Y) .

If cosy = x cos (a +y), with cosa # + 1, prove that ,
dx sina

2
Ifx=a(cost+tsint)andy =a(sint—t cost), find %
X

If f(xX) = | x ], show that f ”(x) exists for all real x and find it.

Using mathematical induction prove that di(x”):nx”‘l for all positive
X

integers n.
Using thefact that sin (A + B) =sinA cosB + cosA sin B and the differentiation,
obtain the sum formulafor cosines.

Doesthereexist afunction which iscontinuous everywhere but not differentiable
at exactly two points? Justify your answer.

f(x) g(x) h(x) f'x) g(®) h(x)
Ify=| | m n |, provethat Yo m n
dx
a b ¢ a b c

2
If y = gacos’x, —1<x< 1, show that (1_ XZ)M_Xﬂ_aZy:o.
dx*  dx

Summary

A real valued functionis continuousat apoint initsdomain if thelimit of the
function at that point equalsthe value of the function at that point. A function
iscontinuousif it iscontinuous on the whole of itsdomain.

Sum, difference, product and quotient of continuous functionsare continuous.
i.e., if f and g are continuous functions, then

(f+g) (X) =f(X) £ g(x) is continuous.
(f.g) (¥X) =f(X) . g(x) is continuous.
f f(X)

(aj(x) ) (wherever g(x) # 0) is continuous.

¢ Every differentiable function is continuous, but the converseis not true.
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¢ Chainruleisruleto differentiate composites of functions. If f=vou, t = u (X)

and if both E and % exist then

g e el
dx dt dx
¢ Following are some of the standard derivatives (in appropriate domains):
i(sin‘1 X) = ! i(cos‘1 X)=— !
dx 1— x2 dx 1- x?
d 1 d 1 -1
—(tan""x) = —(cot™ x)=
dx( ) 1+ X° dx( ) 1+ x°

i( Cosa;_l X) — _—1
dx X+/1-x?
1

d
—(logx)==
dx( g) X

¢ Logarithmic differentiation isapowerful techniqueto differentiate functions
of the form f(x) = [u (X)]V®¥. Here both f(x) and u(x) need to be positive for

this technique to make sense.

¢ RollesTheorem: If f: [a, b] — R iscontinuouson [a, b] and differentiable
on (a, b) such that f(a) = f(b), then there exists some c in (a, b) such that

f/(c) = 0.

© Mean Value Theorem: If f: [a, b] — R is continuous on [a, b] and
differentiable on (a, b). Then there exists some cin (a, b) such that

f(c) =

f(b)— f(a)

b-a

—_— e —



